Browsed by
Category: 40G QSFP+

Cabling Options for 40G QSFP SR4 and 40G QSFP BiDi Transceivers

Cabling Options for 40G QSFP SR4 and 40G QSFP BiDi Transceivers

The boosting global data traffic spurs the demand for faster data transmission and greater capacity over the network, and the demand is not gonna slack. Thus migration from 10G to higher speed 40G or 100G becomes an inevitable trend yet a necessity for network managers to accommodate the data boom. For 40G short-reach data communication and interconnect applications, 40G QSFP SR4 and 40G QSFP BiDi transceiver modules are generally involved. This article guides you through the working principles of the two 40G transceivers, and then presenting the cabling options for each.

40G QSFP SR4 and 40G QSFP BiDi at a Glance

Before we go any further, it’s better to first obtain some basic information about 40G QSFP SR4 and 40G QSFP BiDi transceiver. As they both used to support short-range (SR) 40G connectivity, the major difference lies in the protocols, namely the way to achieve data transmission for 40G application. 40G QSFP SR4 operates over MMF ribbon with MPO connectors, utilizing 4 parallel fiber pairs (8 fiber strands) at 10Gbps each for a total of 40Gbps full duplex.

40g qsfp sr4

40G QSFP BiDi uses the same 10-Gbps electrical lanes, however, they are combined in the optical outputs. Thus requiring two fibers with a LC connector interface. Each fiber simultaneously transmits and receives 20-Gbps traffic at two different wavelengths. Which means that 40G QSFP BiDi module converts four channels each of 10Gbps transmit and receive signals to two bidirectional channels of 20Gbps signals. The connection can reach 100 m on OM3 MMF or 150 m on OM4 MMF, which is the same as 40-Gbps SR4.

40g qsfp bidi

Cabling Solutions for 40G QSFP SR4 and 40G QSFP BiDi Transceivers

Whether for 40G QSFP SR4 or BiDi Transceivers, there basically exist three cabling approaches: direct connection, interconnection and cross-connection. This section respectively illustrates the three approaches for 40G transceiver cabling.

Options for 40G QSFP SR4 Transceiver

40G SR4 operates over 12-fiber strands terminated by MPO-12 connectors, 8-fiber strands carry traffic and 4 are unused. So there are three cabling options for parallel 40G QSFP SR4 connectivity:

  • Solution 1: No conversion and uses traditional 12-fiber MTP connectivity.
  • Solution 2: Use conversion module. Converts two 12 fiber links to three 8 fiber links through a conversion patch panel.
  • Solution 3: Converts two 12-fiber links to three 8-fiber links through a conversion assembly and standard MTP patch panels.

Here we offer cabling options for parallel 40G QSFP SR4 transceiver based on these three solutions.

Scenario One: Direct Connection for 40G QSFP SR4 Transceiver

Direct connection between two parallel optics 40G Ethernet transceiver, a Type-B (key up to key up) MTP patch cable should be used. With fiber 1 on one end goes to fiber 12 on the other end, this reverse fiber positioning ensures the signal to flow from transmission on one end of the link to reception on the other end. The picture below shows an MTP patch cable directly connects two switch ports.

40g-QSFP-SR4 direct connection

Scenario Two: Interconnection for 40G QSFP SR4 Transceiver

The most basic structured cabling solution is an interconnect. The following picture shows several interconnect approaches with various patch panel options.

a. The 2×3 conversion modules allow 100% fiber utilization and constitute the most commonly deployed method. It also greatly reduced jumper complexity. The female to female Type-B polarity cable here is used to directly connect two parallel optic transceivers. That same jumper is used on both ends of the interconnect link, thus eliminating concerns about correct pinning.

b. The same trunk used in method a is adopted, but the jumper type is now male to female Type-B polarity. Thus, when you install the MTP patch cable, you would install the male end in the patch panel, and you would install the female end in the electronics.

c. This combined solution might be deployed when cabling between a spine switch, where the module is placed, and a ToR leaf switch, where the conversion harness and MTP adapter panel are located.

40g-QSFP-SR4 interconnection

Scenario Three: Cross-Connection for 40G QSFP SR4 Transceiver

The picture below shows two cross-connection link designs for cabling a 40G QSFP SR4 transceiver.

a. This link design shows a conversion module example, which again is the most common and preferred method. All the three jumpers in the link are female to female MTP patch cable with Type-B polarity. Thus, in a conversion module deployment, only one jumper type is used for a direct-connect, interconnect, or cross-connect cabling scenario.

b. Standard MTP patch panels are deployed in this method. Here the MTP patch cables at the electronics are female (into the electronics) to male (into the patch panel), although the patch cords at the cross-connect are male-to-male going into the patch panel.

40g-QSFP-SR4 cross-connection

Options for 40G QSFP BiDi Transceiver

Cabling for 40G QSFP BiDi transceiver is relatively easy. Three methods are presented here.

Scenario One: Direct Connection for 40G QSFP BiDi Transceiver

In an unstructured cabling system, devices are directly connected with fiber optic cable. This direct-attachment design can be used to connect devices within short distances in a data center network. Direct connection between two 40-Gbps devices can be provided by MMF cables with QSFP BiDi transceivers at two ends.

40g-QSFP-SR bidi direct connection

Scenario Two: Interconnection for 40G QSFP BiDi Transceiver

When it comes to structured cabling, more permanent links should be considered. The interconnection link between two 40G bidirectional ports basically consists of an MTP trunk, MTP module cassettes and LC fiber patch cables. Future migration can be achieved simply by changing the patch panels on each end, without the need to disrupt the cabling infrastructure.

40g-QSFP-SR bidi interconnection

Scenario Three: Cross-Connection for 40G QSFP BiDi Transceiver

The cross-connection design involves two structured cabling links, which connect two switches via a centralized cross-connect. This design delivers much flexibility when new equipment need to be installed: only patch cables are required to make the connection from the equipment to the patch panels.

40g-QSFP-SR bidi cross-connection


Judging from the cabling solutions for 40G QSFP SR4 and BiDi transceivers, it is clear that QSFP BiDi transceivers provide immense flexibility and simplicity compared to parallel 40G QSFP SR4 transceivers, while removing cost barriers for migration from 10G to 40G in data center networks. However, the main advantage of 40G SR4 transceiver over 40G BiDi transceiver is the reach. Hope what we discussed in the article could help make an informed decision.

Introduction to 10GbE/25GbE/40GbE/100GbE Fiber Optic Cabling

Introduction to 10GbE/25GbE/40GbE/100GbE Fiber Optic Cabling

Technology is changing rapidly. Just when you got used to Gigabit Ethernet speeds being a fast & reliable system, someone unveiled 10GbE, 25GbE, 40GbE or even 100GbE systems a few years later. The newer and higher performing iterations are indeed the great breakthrough for telecommunication industry, but also pose difficulty in choosing network migration path—10G to 40G to 100G, or to 25G to 50G to 100G. We have described 10G, 25G, 40G and 100G Ethernet technology before, now in this blog, we’d like to introduce the four fiber optic cabling, and compare two 100G migration paths.

Cost-effective 10GbE Fiber Optic Cabling

10 Gigabit Ethernet technology defined by IEEE 802.3ae-2002 standard, is matured nowadays. Just like the “old” Gigabit Ethernet, 10Gb network can be terminated with either copper or fiber cabling. 1000BASE-T standard usually uses the Cat5e cables as the transmission media, while 10GbE bandwidth requires high grade copper cables like Cat6/Cat6a/Cat7 cables to support 10Gbps data rate. For instance, 10G SFP+ 10GBASE-T transceiver modules utilize Ethernet copper cables (Cat6a/Cat7) for a link length of 30m. SFP+ direct attach cables (DAC) and active optical cables (AOC) are also regarded as the cost-effective solutions for 10G short-reach applications. Besides 10G copper cables, there are single-mode (OS2) and multimode fiber patch cables (OM3/OM4) applied to different 10GbE IEEE standards. For the detailed information about the 10G cabling options, please see the following table.

10G fiber optic cable

As to the 10G fiber optic transceivers, there are a series of optical form factors including the XENPAK, X2, XFP, SFP+. The former three 10GbE optical transceivers were released earlier than smaller 10G form factor—SFP+ module. However, owing to their larger footprint, they are not successful on the 10G hardware market. Furthermore, SFP+ optics, compliant with several IEEE standards (SR, LR, LRM, ER, ZR and 10GBASE-T…) wins the heart of 10G end-users.

Singe-lane Design Makes 25GbE Shine

When 25G Ethernet was developed to support a single-lane 25Gbps standard in 2014, it was treated as the “new” 10GbE technology but delivers 2.5 times more data. Compared to 40GbE that was based on 10GbE, 25GbE with one lane obviously improves the port density and cost requirement. 25GbE network can support both copper and fiber optic cables, seen in the below table.Similar to 10GbE networks, 25G Ethernet physical interface specification supports several 25Gbps capable form factors, including CFP/CFP2/CFP4, SFP28 (1×25 Gbps) and QSFP28 (4×25 Gbps), which is also used for 100GbE. SFP28 25GBASE-SR and 25GBASE-LR SFP28 are two popular 25GbE optical transceiver modules available on the market, the former supports up to 100m link length while the latter allows a maximum transmission distance of 10 km.

25G optical modules

The available optical switches of the market do not support direct 25GbE connections using an SFP28 direct attach copper (DAC) cable. It is recommended to use a breakout cable that allows four 25GbE ports to connect to a 100GbE QFSFP28 switch port. FS.COM SFP28 DAC cable lengths are limited to four meters (1m, 2m, 3m, 5m) for 25GbE. And if you prefer a longer length, the 25GbE active optic cable (AOC) solutions are good recommendations.

25G Optics SFP28 Type
All 25G SFP28 Ports 25GBASE-SR 50µm MMF / 70m
25GBASE-LR 9µm SMF / 10km
25GBASE-AOC Pre-terminated in 3, 5, 7, 10, 15, 20, 25, 30m lengths
25G Copper SFP28 Type Media/Reach
All 25G SFP28 Ports 25GBASE-CR Twinax / ‘Direct Attach’ Pre-terminated in 1m, 2m, 3m, 5m lengths


Fast & Reliable 40GbE Fiber Optic Cabling

Like the 10GbE fiber optic cabling, there are several IEEE standards of 40GbE transceiver in the whole evolution. 40G QSFP+ optical transceivers are the most commonly used optics for 40G network. So how to choose fiber optic cables for 40G optical transceivers? The following table will help you out.

40G modules

Besides the QSFP+ fiber transceivers and fiber optic cables, 40G DAC cables available in QSFP+ DAC cables and AOC cables enable short-reach options. For 40G cabling, QSFP+ to QSFP+ (40G to 40G) and QSFP+ to 4SFP+ (40G to 10G) breakout cables satisfy customers for various fiber types and reach requirements.

100GbE Fiber Optic Cabling For Future Proofing

With the price of 100G optics cutting down in 2017, 100GbE network is no longer out of customers’ reach. Telecom giants like Cisco, Arista, HPE launches series of 100G optical switches to meet the market demand. And for other 100G components like 100G optical transceivers, fiber patch cables, racks & enclosures, etc, those are ubiquitous on the market.

100G optical transceivers including the CFP, CFP2, CFP4, CXP and the most popular 100G QSFP28 optics in IEEE standards provide a great selection to the overall users.For 100G inter-rack connections, QSFP28 to QSF28 Direct Attach Copper (DAC) Cables and Active Optical Cables (AOC) as well as the QSFP28 to SFP28 breakout cables are the cost-effective solutions.

Path 1: 10G to 40G to 100G

Many of the largest data centers has already moved to 40GbE, which are constructed out of 4 parallel SerDes 10Gb/s links between the Ethernet chip and the QSFP pluggable. The short-reach QSFP interfaces (QSFP+ SR4 modules) use 4 pair of fiber between them, and the copper Direct Attach Cable (DAC) equivalent carry the same on several copper cables inside the big cable. Longer-reach QSFP interfaces (QSFP+ LR4 optics) put the 4 10Gb/t streams onto separate Wave Division Multiplexing (WDM) waves which can be carried over a single pair of fiber. This is part of the reason why QSFP optics are fairly expensive still, especially for longer distances.10GbE to 40GbE to 100GbESimilarly for the 100GbE interfaces that are available today, these are really constructed out of 10 parallel paths of 10Gb/t streams. 100G SR10 modules is the optical transceiver modules that support 10×10Gb/s modes. But neither the CXP SR10 modules or CFP 100G SR10 optics are not popular on the 100G hardware market owing to their larger form factors. Eventually, they need to utilize the smaller footprint 100G modules—QSFP28 transceiver, which is mentioned above as the optical transceivers that can be used in 25GbE and 100GbE.

Result: Although the migration path from 10G to 40G to 100G requires more ports and increases cost per bit, 40GbE between switches is expected to be remain and will not be affected in the near future.

Path 2: 25G to 100G—The Move From 10 Lanes to 4

The old transition path of Ethernet has increased by 10X in speed like the 10G to 40G to 100G. However, 25 Gbps over a single lane for server makes 100G migration be 4×25Gb/s mode.100-gbe-block-diagramUsing four-lane variants like QSFP28 is more economical in several ways:

  • The single-lane design makes four 25 Gbps lanes transceivers less expensive than ten 10Gbps lanes because the transceiver is simpler and less costly to manufacture.
  • The power required to run SFP28 transceivers is much less than required for a typical 10-lane transceiver, it is the same case as the cooling costs.
  • For fiber connections, moving from 10GbE to 40GbE may require an upgrade to four times the number of fibers (MPO), but a 25GbE connection does not because it is the same as 10GbE (single TX and single RX, not four each for TX and RX).
  • Moving from 10GbE to 40GbE typically requires a forklift upgrade to thicker, more expensive cables, but a 25GbE direct attach copper connection does not.

Result: There are few switches and NIC cards that directly support 25GbE. But the curve for 25GbE won’t fade away, rapid development and pre-standard 25GbE products coming soon!


This article introduces 10G/40G/100G fiber optic cabling, and make a clear comparison between the two paths to 100GbE. Customers prefer 4×25Gbps for the reasons: Less parallel paths, less fibers, less optics, less everything. For those who want to upgrade from 40G to 100G, appreciate the reliable performance of 40G with the potential to run across 2 parallel 25Ghz rather than 4 required today.

40GbE Parallel QSFP+ vs Duplex QSFP+ in 40G MMF Cabling

40GbE Parallel QSFP+ vs Duplex QSFP+ in 40G MMF Cabling

There two ways to deploy 40GbE multimode fiber (MMF) infrastructure. One is using the parallel transceivers with 12-fiber MTP cables. And the other one is to use the duplex transceivers with LC duplex cables (view transceiver options for 40GbE over duplex LC MMF cable). The former solution requires to add additional fiber to increase the number of 40GbE links. Thus, more fiber cost is taken in this solution. Conversely, the duplex transceiver solution allows for zero-cost fiber migration by reusing the current 10GbE fiber infrastructure for 40GbE connectivity. In this post, the typical cost difference for fiber infrastructure for parallel transceivers and duplex transceiver is introduced.

Typical MMF Cabling Cost Per 40GbE Link With Parallel Transceivers

In this scheme, a pairs of 40GbE parallel transceivers called 40GBASE-SR4 QSFP+ are used with the MTP patch cables and trunks. In addition, two MTP-MTP conversion modules are required. As shown in the picture below, there are two patch cables, two MTP-MTP conversion modules, and a 24-fiber trunk per link. Since the QSFP-40G-SR4 just uses 8 fibers in the trunk per link, total two MTP-MTP conversion modules can be used for 3 links.

40G parallel transceivers

The detailed cost for per 40GbE link with parallel transceivers are shown in the following table:

Item Unit Price Extended Price Per 40GbE Link
MTP patch cables (5 m, OM3) US$48.00 US$96.00
MTP-MTP conversion modules (OM3) US$400.00 US$267.00
24-fiber MTP trunk (90 m, OM3) US$367.00 US$123.00
Total US$486.00


Typical MMF Cabling Cost Per 40GbE Link With Duplex Transceivers

In the scheme using duplex transceivers, such as Juniper JNP-QSFP-40G-LX4 or Arista 40G QSFP-UNIV, two LC patch cables, two MTP-LC cassettes and a 24-fiber MTP trunks are used. As shown in the picture below, by deploying the duplex 40GbE transceivers, users can increase the number of 40G links by 4X without making any changes to their fiber infrastructure. In other word, the total two MTP-LC cassettes can be used for 12 links.

40G duplex transceivers

The detailed cost for per 40GbE link with duplex transceivers are shown in the following table:

Item Unit Price Extended Price Per 40GbE Link
Duplex LC patch cables (5 m, OM3) US$4.00 US$8.00
MTP-LC cassettes (OM3) US$120.00 US$20.00
24-fiber MTP trunk (90 m, OM3) US$367.00 US$30.00
Total US$58.00



The prices of product above are estimated according to FS.COM list prices (for reference only). Assume shipping costs are the same, as you see, a saving of over 90% on the cabling equipment alone is realized from the duplex transceivers. The project management costs to upgrade existing duplex systems are entirely avoided resulting in even more significant savings. In addition, the duplex transceivers mentioned above can also support running over single-mode fiber which is a cost-effective solution for migrating from multimode to single-mode fiber.

However, it is noted that the duplex 40GbE multimode transceiver is more expensive than the parallel one. For example, the 40GBASE-SR4 costs just 65 dollors while the LX4 costs about 400 dollors at FS.COM. Thus, the best option is just to choose the one you need, based on your network plan and future-proof upgrade.

Buyer Guides: At FS.COM, you can buy the above products at very affordable prices. In addition, you can buy both parallel and duplex 40GbE transceivers for many major brands compatible. For more information, please contact
40G QSFP+ Breakout Cables vs. QSA Module

40G QSFP+ Breakout Cables vs. QSA Module

When one end of the network is running on a 40 Gigabit platform, and the other end of the network is running at lower speeds such as 10 Gbps, migration is required. Using fan-out technology and QSA are two different methods to achieve the migration between 40 Gigabit Ethernet and 10 Gigabit Ethernet. But which is better?

Expands the 40G Data Pipe into 4x10G Lanes With Breakout Cables

40G QSFP+ to 4×10 SFP+ breakout cables including direct attach copper cable (DAC) and active optical cable (AOC) can take a 40 Gigabit physical interface and break it out into four SFP+ interfaces, converting the downlink 40G port of ToR (Top of Rack) access layer switch into 4x10G channels then connect to the cabinet server port. Thus, they are considered as the most cost-effective solution for 10G to 40G migration in short-reach interconnect environment.


Converting a QSFP+ Port to an SFP+ Port With QSA

QSA (Quad Small Form-Factor Pluggable Adapter) is the first solution for the QSFP+ to SFP+ conversion challenge in the world. It enables smooth connectivity between devices that use quad lane ports and 10 Gigabit Ethernet hardware that uses SFP+ based cabling. In other words, with QSA, you can effectively use a QSFP or QSFP+ module to connect to a lower-end switch or server that uses an SFP+ based module.

QSA module is built in a QSFP+ form factor with a cage for SFP+ module at the back. When inserting an SFP+ into a QSA connected to a 40 Gigabit port, QSA acts as an interface for the SFP+. This interface enables you to directly plug in an SFP+ originating at a 10 Gigabit Ethernet port on a switch or server.


40G QSFP+ to 4×10 SFP+ Breakout Cables vs. QSA

As mentioned above, we can use QSFP+ to 4x10G SFP+ breakout cables to split a 40 Gigabit port on a switch or a server into four 10 Gigabit ports. Or use QSA to convert a QSFP+ port to an SFP+ port. However, which one is better for an optimal ROI (Return on Investment)? Obviously, the former is more cost-effective for these reasons:

  • Technology and products of QSFP+ to 4x10G SFP+ breakout cables are more mature in today’s market. Users can even use the 3rd party product without considering the problem caused by vendor lock-in.
  • QSFP+ to 4x10G SFP+ breakout cables split the 40G channel into 4x10G channel which provides four times more data transfers compared to a QSA that just provides connectivity only for a single 10G connection.
  • QSFP+ to 4x10G SFP+ breakout cables support both DAC and optical connectivity, and are cheaper than the expensive QSA.

40G QSFP+ to 4×10 SFP+ breakout cables and QSA modules can both be used for migration between 40G and 10G ports. But considering cost, performance, and compatibility actual environment, the 40G QSFP+ to 4×10 SFP+ breakout cables seem to be better. FS.COM offers a wide range of 40G QSFP+ to 4×10 SFP+ breakout cables including QSFP+ to 4×10 SFP+ DACs and QSFP+ to 4×10 SFP+ AOCs, which are 100% compatible for various platform, like Cisco, HPE, Juniper, and so on. For more information, please visit or contact

Buyer Guide: FS.COM offers cost-effective and highly compatible QSFP BiDi transceivers which are tested to ensure 100% Cisco compatibility.
Categories Description
40G QSFP+ to 4xSFP+ DAC Every cable is individually tested on corresponding equipment such as Cisco, Arista, Juniper, Dell, Brocade and other brands, passed the monitoring of Fiberstore’s intelligent quality control system
40G QSFP+ to 4xSFP+ AOC
How to Run 40GbE Over Duplex LC MMF Cabling

How to Run 40GbE Over Duplex LC MMF Cabling

The use of parallel optics in 40GbE multimode fiber cabling (MMF cabling) require more fiber strands than the 10GbE infrastructures. Thus, data center will require a cabling upgrade to meet the requirement of migration. In this case, cost is a big factor. To help user solve the fiber cost issue, many vendors developed a new transceiver alternative that allow zero-cost fiber migration by reusing the current 10Gbps multimode fiber-optic cabling plant for 40Gbps connectivity. This post will introduce three mainstream transceiver options for running 40GbE over duplex multimode fiber cable with LC connectors.

Option 1: Cisco QSFP 40G BiDi Transceiver (QSFP-40G-SR-BD)

The Cisco QSFP BiDi transceiver can transmit full-duplex 40Gbps traffic over one duplex OM3 or OM4 MMF cable with LC connector. It provides the capability to reuse 10Gbps fiber infrastructure, enabling data center operators to upgrade to 40Gbps connectivity without making any changes to the previous 10GbE infrastructures.

The working principle of Cisco QSFP BiDi transceiver is that it uses has two 20Gbps channels, each transmitted and received simultaneously over two wavelengths on a single MMF strand, as shown in the following.


Concept of QSFP BiDi transceiver

Cisco QSFP BiDi transceiver can be supported in most Cisco switching and routing products that support 40GbE interfaces. The connection distance can reach up to 100 meters over OM3 MMF or 150 meters over OM4 MMF, which is the same as 40GBASE-SR4 QSFP+.

Note: The other version of Cisco QSFP BiDi transceiver (QSFP-40G-BD-RX) is almost the same with the QSFP-40G-SR-BD, but with link monitor hardware, such as the Cisco Nexus® Data Broker.

Buyer Guide: FS.COM offers cost-effective and highly compatible QSFP BiDi transceivers which are tested to ensure 100% Cisco compatibility.
ID# Description More Details
48722 Cisco QSFP-40G-SR-BD Compatible 40GBASE-SR Bi-Directional Duplex LC Transceiver View
65231 Cisco QSFP-40G-BD-RX Compatible 40GBASE-SR Bi-Directional Duplex LC DOM Transceiver View


Option 2: Juniper 40Gbps QSFP+ LX4 (JNP-QSFP-40G-LX4)

Juniper 40Gbps QSFP+ LX4 module uses the same infrastructure as 10GbE. The LX4 technology represents a new way to deploy 40GbE that meets all of the performance criteria of today’s data centers by providing 40GbE on two MMF strands with duplex LC connectors. Thus, users can simply replace existing 10GbE transceiver modules with 40GbE LX4 modules without expensive 40GbE migration cassettes and additional fiber infrastructure.

As the following picture shown, QSFP+ LX4 transceiver uses four 10Gbps channels, each transmitted and received simultaneously over four wavelengths on a single MMF strand. Similar with the 40GBASE-SR4 modules, it can also support transmission distance up to 100 meters over OM3 MMF or 150 meters over OM4 MMF cable. Juniper 40Gbps QSFP+ LX4 can be supported in many Juniper devices that support 40GbE interface, such as QFX3000 QFabric system, QFX5100 switches, and so on.


Concept of QSFP+ LX4 transceiver

Note: The Juniper 40Gbps QSFP+ LX4 also support to run over single-mode fiber (SMF: OS1) and reach up to 2 kilometers.

Buyer Guide: FS.COM offers cost-effective and highly compatible QSFP+ LX4 transceiver which are tested to ensure 100% Juniper compatibility.
ID# Description More Details
36175 Juniper Networks JNP-QSFP-40G-LX4 Compatible 40GBASE-LX4 QSFP+ 1310nm 2km DOM Transceiver View


Option 3: Arista Networks QSFP-40G-UNIV Transceiver

The Arista networks QSFP-40G-UNIV is a 40GbE QSFP+ transceiver with a duplex LC connector that can be used with both MMF and SMF. Its working principle is similar with the Juniper LX4 mentioned above, having 4 channels of 10G multiplexed inside the module to transmit and receive an aggregate 40Gbps signal over 2 strands of fiber. UNIV is short for the word “universal” because of its ability to operate with both MMF and SMF without the need for any software/hardware changes to the module or any additional hardware in the network. The Arista networks QSFP-40G-UNIV can operates on OM3 or OM4 MMF for distance up to 100 meters or SMF (OS1) for distance up to 500 meters. It is noted that this QSFP module can interoperate with Cisco and other vendors standards based 40GbE LR4 optics.

Buyer Guide: FS.COM offers cost-effective and highly compatible QSFP-40G-UNIV transceiver which are tested to ensure 100% Arista Networks compatibility.
ID# Description More Details
36196 Arista Networks QSFP-40G-UNIV Compatible 40GBASE-UNIV QSFP+ 1310nm 500m DOM Transceiver View


For more details, please contact